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Weak fountains
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Analytical solutions for the initial rise height zm of a turbulent fountain for the limits
of both small and large source Froude number Fr0 are presented. These solutions
are based on a plume entrainment model. For large Froude number fountains,
the established result zm/r0 ∼ Fr0 is obtained (r0 denoting the source radius). For
intermediate Froude numbers, the relationship zm/r0 ∼ Fr2

0 is found and the rise height
is independent of the entrainment coefficient α. For very small Froude numbers, the
flow is hydraulically controlled at the source and zm/r0 ∼ Fr2/3

0 . Existing experimental
and numerical results, as well as our own experimental results, are compared to
our solutions and show good agreement. Comparison with experimental results also
demonstrates that the appropriate entrainment coefficient for highly forced fountains
is αf ≈ 0.058. This is significantly closer to the entrainment coefficient of a jet than
of a plume.

1. Introduction
Turbulent fountains are formed by the continuous high-Reynolds-number steady

supply of buoyant fluid to a quiescent environment with a source momentum flux
that opposes the buoyancy flux. A schematic of the flow development of a turbulent
fountain is shown in figure 1. A negatively buoyant fountain will rise upward, owing
to the source momentum flux, and entrain ambient fluid (figure 1a). However, the
opposing buoyancy force acts to reduce the local momentum flux, resulting in the
fountain stopping at the initial maximum rise height zm (figure 1b). The flow then
reverses direction and falls back down around the up-flowing fountain core, settling
at a steady-state height zss that is approximately 30 % below the initial maximum
(figure 1c).

Using dimensional arguments, Turner (1966) showed that the rise height of a
fountain scales on the source momentum jet length (Morton 1959)

zm ∼ LM (z = 0) =

(
5M

3/2
0

9αF0

)1/2

, (1.1)

where the source momentum flux is given by πM0/2, the source buoyancy flux by
πF0/2 and the entrainment coefficient by α. (Herein the momentum jet length is
written in the same way as in Hunt & Kaye (2005), rather than in Turner (1966), for
consistency with the analytical model presented in § 2.)

Turner (1966) presented experimental results that showed that both the initial rise
height (zm) and the steady-state rise height (zss) scale on LM (0) with

zm ≈ 1.43zss . (1.2)
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Figure 1. Schematic of a turbulent fountain rising owing to source momentum flux (a),
reaching peak height (b) and settling to steady-state height (c).

Again using dimensional arguments, Baines, Turner & Campbell (1990) scaled the
rise height on the source radius (r0) and showed that this dimensionless rise height is
a linear function of the source Froude number Fr0 = u0/

√
r0g

′
0, where the subscript ‘0’

refers to values at the source and u and g′ are the vertical velocity and reduced gravity,
respectively. Note that Fr0 ∼ LM (0)/r0 implying the same jet length scaling as Turner
(1966). Baines et al. (1990) extended the range of Froude numbers covered by the
experiments of Turner (1966) to Fr0 ≈ 250 and their experimental results confirmed
that

zss

r0

= 2.46Fr0. (1.3)

Lane-Serff, Linden & Hillel (1993) also parameterized the rise height in terms of
the jet length when examining forced angled plumes. Furthermore, they showed that
the flow could be described in terms of a point source of momentum and buoyancy
located at a virtual origin. (In our formulation of the equations described later we
parameterize the flow in terms of a source parameter Γ0 (2.2) which has an ambiguous
limit at the virtual origin. Γ0 = 0 can represent a zero volume flux or zero buoyancy
flux source. Therefore, our formulation does not lead to a virtual origin correction.)

Bloomfield & Kerr (2000) present a theoretical model for the rise height of a
fountain. They modified the plume entrainment equations of Morton, Taylor &
Turner (1956) to account for the down-flow on the steady-state rise height. Their
model accounted for entrainment between the up-flow and down-flow as well as
between the down-flow and the ambient. Bloomfield & Kerr (2000) varied the rate of
entrainment for each of these areas of fluid exchange and found that zss is sensitive
only to the entrainment rate between the down-flow and the ambient fluid. By reducing
this entrainment, the down-flow remains relatively more dense and, therefore, gains
momentum. This would seem to imply that the most significant factor in reducing
the rise height from peak (zm) to steady state (zss) is the entrainment of downward
momentum into the upward flowing fountain.

‘Weak’ turbulent fountains, that is, fountains with small source Froude numbers,
were examined by Zhang & Baddour (1998). They present experimental results for the
initial penetration depth zm of a fountain for 0.37 � Fr0 � 36.2. Their experimental
results indicate that for Fr0 < 7, the linear Froude number scaling does not apply
and the appropriate scaling is zm/r0 ∼ Fr1.3

0 . However, Lin & Armfield (2000a) present
numerical simulation data in the range 0.1 � Fr0 � 1.0 that suggests the linear
Froude number scaling is valid, but for Fr0 > 1 this relationship will underestimate
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the rise height. They, therefore, regard weak fountains as those with source Froude
numbers less that one. This work was extended by Lin & Armfield (2000b) to very
weak fountains where viscosity plays a role. They argue that for very weak fountains,
the only parameters that play a role are the viscosity ν and the source buoyancy g′

0.
Therefore

zm ∼
(

ν2

g′
0

)1/3

or
zm

r0

∼
(

Fr0

Re0

)2/3

. (1.4)

This leads to the counter-intuitive result that the rise height increases with decreasing
Reynolds number Re0. Their numerical simulation results support their Froude-
number scaling (for example their equation (26) gives zm/r0 = 1.26Fr2/3

0 , for Re0 = 200);
however, their Reynolds number results are less clear. For Fr0 = 0.05, they obtain
zm/r0 = 0.1615 + 0.3803Re

−2/3
0 (their equation (28)). For Re0 > 50, the Reynolds-

number term accounts for less than 15 % of the rise height and the constant term
dominates. It would therefore appear that the flow need not be fully turbulent for the
Reynolds-number effect to be small.

Clearly there is some disagreement in the literature regarding weak turbulent
fountains. It is the goal of this paper to determine the exact nature of the rise height
scaling for weak turbulent fountains, to establish the range of Froude numbers for
which fountains should be regarded as weak and to explain the role of the Reynolds
number on the rise height.

In § 2, the plume conservation equations of Morton et al. (1956) are rewritten in the
form introduced by Hunt & Kaye (2005). Analytic solutions are then presented for
the initial rise height of a fountain for both small and large Froude-number limits.
However, for very small Froude numbers, our model is no longer appropriate as
the flow is hydraulically controlled at the source. In this case, we present a physical
argument for the Froude-number scaling and discuss the role of viscosity. In § 3, these
solutions are compared to new and existing experimental and numerical results. When
scaled, all these results collapse onto a single line covering three separate regimes of
‘forced’, ‘weak’ and ‘very weak’ fountains. Based on these results, the appropriate
entrainment coefficient for a large-Froude-number highly-forced turbulent fountain
is discussed. Conclusions are drawn in § 4.

2. Analytic solutions for initial rise height
The conservation equations of Morton et al. (1956) for a constant buoyancy flux

plume from a localized horizontal source in a quiescent uniform environment can be
written in terms of the fluxes of volume (πQ), momentum and buoyancy as

dQ

dz
= 2αM1/2,

dM

dz
= 2

QF

M
, (2.1)

where α is the entrainment coefficient appropriate for Gaussian profiles and z is
the vertical coordinate measured from the source. In general, the source conditions
are Q =Q0, M = M0 and F =F0 at z = 0. For a fountain, M0 is positive when in
the positive z-direction and, therefore, F0 will be negative. Although these equations
are only strictly applicable to fully developed self-similar flows, they have been
successfully applied to non-self-similar flows such as a plume in a stratified environ-
ment (Morton et al. 1956), highly forced plumes (Morton 1959), highly lazy plumes
(Hunt & Kaye 2001) and turbulent fountains (Bloomfield & Kerr 2000).
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Hunt & Kaye (2005) showed that (2.1) can be rewritten in terms of the flux balance
parameter Γ and the dimensionless plume (or fountain) radius β

Γ (z) =
5Q(z)2F (z)

4αjetM(z)5/2
, β(z) =

Q(z)M(z)−1/2

Q0M
−1/2
0

. (2.2)

Hunt & Kaye (2005) use a constant entrainment coefficient α in their model. However,
this is unlikely to be the case for flows that are not fully self-similar (see Kaminski,
Tait & Carazzo 2005). We therefore write φ = α/αjet in our model. The equations of
Hunt & Kaye (2005) now become

dΓ

dζ
=

10Γ

3β
(φ − Γ ),

dβ

dζ
= 1

3
(5φ − 2Γ ), (2.3)

where ζ = z/(5Q0/6αjetM
1/2
0 ). Although we will not present solutions for a variable α

flow, we write the equations in this way to demonstrate the role of α in the various
flow regimes. Note that Γ is equivalent to the Richardson (Ri) number, or the inverse
square of the Froude number Γ ∼ Ri ∼ Fr−2.

For a fountain, the source buoyancy flux and momentum flux are of opposite sign.
The source value of Γ is therefore negative and for convenience we write Γ ′ = −Γ

such that Γ ′ > 0. (2.3) then becomes

dΓ ′

dζ
=

10Γ ′

3β
(φ + Γ ′),

dβ

dζ
= 1

3
(5φ + 2Γ ′), (2.4)

which can only be applied to the initial rise of the fountain and not to the subsequent
collapse of the flow. The source conditions are given by

Γ ′ = Γ ′
0, β = 1 at ζ = 0. (2.5)

Any non-zero finite positive value of Γ ′ will lead to a growth in Γ ′ with height
(2.4). Also, as Γ ′ → ∞ the value of β → ∞. Therefore, it is assumed that the fountain
will reach its maximum height in this limit.

Equation (2.4) can be solved subject to (2.5) to give the width

β =
Γ ′1/2

(φ + Γ ′)3/10

(φ + Γ ′
0)

3/10

Γ
′1/2
0

. (2.6)

Equation (2.4) can now be rewritten as

dΓ ′

dζ
=

10

3

Γ
′1/2
0

(φ + Γ ′
0)

3/10
Γ ′1/2(φ + Γ ′)13/10. (2.7)

The initial rise height of the fountain ζm is therefore

ζm =
3

10

(φ + Γ ′
0)

3/10

Γ
′1/2
0

∫ ∞

Γ ′
0

Γ ′−1/2(φ + Γ ′)−13/10 dΓ ′. (2.8)

2.1. Highly forced fountains

For highly forced fountains, that is, large Fr0 or Γ ′
0 � 1, we make the assumption

that φ + Γ ′
0 ≈ φ ≈ 1. The assumption that φ ≈ 1 for small Γ ′ is reasonable as the flow

will be dominated by the source momentum flux, buoyancy will play only a minor
role and the flow will behave as a jet. Our assumption will only be valid up to some
value of Γ ′(z) = Γ ′

lim(> Γ ′
0) beyond which the full expression (2.8) must be solved.
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Figure 2. Log–log plot of the initial rise height ζm as a function of the source condition Γ ′
0

showing the numerical solution of (2.8) (thick line), weak fountain analytic solution (2.14)
(dashed line), and derived power-law solution for highly forced fountains (2.12) (dotted line).

The rise height is therefore

ζm ≈ 3

10Γ
′1/2
0

(∫ Γ ′
lim

Γ ′
0

Γ ′−1/2 dΓ ′ + φ3/10

∫ ∞

Γ ′
lim

Γ ′−1/2(φ + Γ ′)−13/10dΓ ′

)
. (2.9)

The second integral is independent of the source value Γ ′
0 and we write

I = φ3/10

∫ ∞

Γ ′
lim

Γ ′−1/2(φ + Γ ′)−13/10 dΓ ′. (2.10)

The solution for ζm is therefore

ζm ≈ 3

5

[(
Γ ′

lim

Γ ′
0

)1/2

− 1 +
I

2Γ ′
0
1/2

]
. (2.11)

In the limit of very small Γ ′
0 such that Γ ′

lim/Γ ′
0 � 1, (2.11) leads to a scaling for the rise

height in terms of Γ ′
0 of ζm ∼ Γ ′

0
−1/2−C. This is the same linear Froude-number scaling

as in Baines et al. (1990), but with a constant offset C. The linear Froude-number
scaling is therefore only applicable in the limit of highly forced fountains where Fr0

is considerably greater than C. This is because highly forced fountains rise like jets
for small ζ , but as ζ increases, the buoyancy force reduces the momentum flux, the
fountain becomes weaker (Γ ′ increases) and the flow moves into a regime with a
different rise height scaling (see figure 2). In other words, the linear Froude-number
scaling is only applicable when the vast majority of the rise height is attained in the
highly forced regime.

Numerical solutions of (2.8) with φ = 1 calculated over a wide range of Γ ′
0 are

shown in a log–log plot in figure 2. This figure shows two power-law relationships,
one for small values of Γ ′

0 (large-Froude-number highly forced fountains) and another
for larger values of Γ ′

0 (small-Froude-number weak fountains). The transition between
the two regimes occurs around Γ ′

0 = O(1). In the limit of very small Γ ′
0 , that is, very
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large Froude number, we can approximate the rise height as

ζm ≈ 0.69Γ ′
0

−1/2
, (2.12)

based on a fit of the numerical solution of the form ζm ∼ Γ ′
0

−1/2.

2.2. Weak fountains

For weak fountains, that is small Fr0 or Γ ′
0 � φ, we make the simplifying

approximation that φ + Γ ′ ≈ Γ ′. For large Γ ′ flows, variable entrainment models
predict that α will be reduced, that is φ < 1. However, (2.4) indicates that the
entrainment becomes insignificant in the flow development (Γ ′ � φ) even if it is
constant, and the reduced entrainment will not effect the analytical results as φ is
negligibly small compared with Γ ′. Equation (2.8) can now be approximated by

ζm ≈ 3
10

Γ ′−1/5
0

∫ ∞

Γ ′
0

Γ ′−9/5 dΓ ′. (2.13)

The initial rise height is therefore

ζm ≈ 3
8
Γ ′

0
−1

. (2.14)

This result approaches the exact solution as Γ ′
0 → ∞. For weak fountains, (2.14)

implies that the rise height scales on the square of the Froude number, rather than
linearly as for forced fountains (1.3). The rise height therefore scales on zm ∼ u2

0/g
′
0

rather than on the momentum jet length LM (0). This implies that the energy of the
flow is conserved with the source kinetic energy completely converted into potential
energy. Note also that entrainment will be reduced and the flow will not be fully
developed. The central core flow of the fountain will be unaffected by the ambient
fluid this close to the source.

The analytic solution for weak fountains (2.14) and the power-law scaling derived
for forced fountains (2.12) are plotted in figure 2. The relative error

ε =
(dΓ ′/dζ )approx
(dΓ ′/dζ )exact

∣∣∣∣
Γ ′=Γ ′

0

, (2.15)

associated with our small and large Γ ′ approximations can be used to estimate
the value of Γ ′ for which the flow will move from the forced to the weak regime.
We assume that this transition occurs when the relative error ε is equal for both
approximations. This occurs at Γ ′

0 = 1.

2.3. Very weak fountains

For very weak fountains the problem becomes one of hydraulic control. The steady-
state height of the fountain provides the head required to drive the fountain outflow
radially over the nozzle edge (see figure 3). The outflow will be at the critical
depth (Frout = 1, z = zc = 2zss/3) as for flow over a weir and, therefore, vout =

√
zcg

′
0.

Conservation of volume requires that

2πr0zcvout = πr2
0u0 or

zss

r0

≈ 0.94Fr2/3
0 . (2.16)

This is the same Froude-number scaling as in Lin & Armfield (2000b). This model
(2.16) also explains the role of the Reynolds number on the flow rise height. As
viscosity becomes more significant it will create a drag on the outflow. This will
increase the amount of energy required to drive the flow. The energy can only be
supplied by increasing the head, that is increasing the steady-state rise height of
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zss

zc

z = 0

Figure 3. Schematic of a vertical section through the fountain nozzle showing the radial
outflow from the fountain controlled by the critical depth at the nozzle edge.

the fountain. Equation (2.16) therefore provides a lower bound on the rise height
for very weak fountains, that is the rise height for large-Reynolds-number flow. For
lower-Reynolds-number flow, the rise height will be greater.

3. Comparison of model with experiments
There are already extensive data sets on the rise height of fountains from both

experimental (Baines et al. 1990) and numerical (Lin & Armfield 2000a , b) studies. In
this section, we re-plot this data on a log–log plot of steady-state rise height scaled
on the source radius (zss/r0) against the source Froude number (Fr0). Although our
theoretical predictions are only for the initial rise height, it is reasonable to expect
that the power-law scalings will hold for both the rise and settling heights.

Small-scale laboratory experiments were also performed to supplement the existing
data on the steady rise height of weak turbulent fountains. The fountains were formed
by forcing a dense saline solution vertically upward into a large tank of still fresh
water. The saline solution was dyed with food colouring and the experiment was
diffusively back lit. The experiments were recorded using a CCD camera connected to
the DigiFlow image processing software (Dalziel 1993). The source volume flow rate
and radius were varied in order to change the source Froude number. Owing to the
physical constraints of the experimental set-up, it was not possible to systematically
study the influence of the Reynolds number on the experimental results. This work
focused on the intermediate Froude number regime – that is, Froude numbers
between the hydraulically controlled and highly forced regimes. Data from the very
weak and highly forced regimes are plotted to demonstrate the consistency of our
experimental results with existing fountain data. A time series of typical images from
our experiments is shown in figure 4.

Our experimental data, along with the experimental data from Baines et al. (1990)
and the numerical data from Lin & Armfield (2000a), are plotted in figure 5. For
small Fr0, it was difficult to read the data accurately from figure 6 of Baines et al.
(1990). We therefore plot their data only for Fr0 > 10. The data show good agreement
with the result for intermediate Froude numbers, namely, that the rise height scales
on the square of the Froude number, not linearly, as is the case for large Froude
numbers. The theoretical result (2.16) also provides a lower bound on the rise height,
as predicted. Our experimental apparatus did not allow for a full exploration of the
Reynolds-number dependence for very weak fountains. However, the model presented
does give a physical explanation for the result of Lin & Armfield (2000b) that the
rise height increases with decreasing Reynolds number.
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Figure 4. Series of images taken at 24 frames per second from a typical experiment with a
weak fountain. The source conditions were Fr0 = 1.3 and Re0 = 254.

10–1 100 101 102 103
10–1

100
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103

Fr0

zss
r0

–––

Figure 5. Experimental results for the steady-state rise height zss as a function of the source

Froude number. The solid line is given by zss/r0 = 2.46Fr0, the dashed line by zss/r0 = 0.94Fr
2/3
0

and the dotted line by zss/r0 = 0.9Fr2
0. The symbols represent data from: �, Baines et al. 1990;

�, Lin & Armfield 2000a; �, our experiments conducted for this paper.

The question of transition Froude numbers is complex owing to the role of viscosity
at low Froude number. It would appear from figure 5 that the transition from highly
forced to weak fountains occurs at Fr0 ≈ 3. The transition from weak to very weak
fountains will be dependent on both the Froude number and Reynolds number. In
the limit when viscosity does not play a role, the transition will occur at Fr0 ≈ 1, as
predicted by Lin & Armfield (2000b). This transition Froude number will increase
with decreasing Re0. We can therefore write the steady-state rise height for an
axisymmetric fountain as

zss

r0

≈

⎧⎪⎨
⎪⎩

2.46Fr0 for Fr0 � 3,

0.90Fr2
0 for 1 � Fr0 � 3,

0.94Fr2/3
0 for 0 < Fr0 � 1.

(3.1)
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For weak fountains, we have shown that the rise height is independent of α.
However, this is not true for high-Froude-number flows. A question then arises as
to what is the most appropriate value of α for a fountain. Entrainment is largely
due to engulfing of ambient fluid by the largest vortex-like structures in the flow.
In buoyancy-driven flows, the vorticity has two main sources, shear and baroclinic
torque. In a plume, the shear and baroclinic torques act together and result in a
larger entrainment coefficient than is produced by shear alone. Hence, plumes have a
higher measured entrainment coefficient than jets. In fountains, the baroclinic torque
opposes the shear, and we might expect α to be less than either that of a jet or that
of a plume. However, for highly forced (large-Froude-number) fountains the bulk
of the rise height is attained while the momentum-driven jet flow dominates and
the opposing buoyancy force plays only a minor role. Therefore, we might expect
that for a highly forced fountain, αf ≈ αjet. We can estimate αf by comparing our
experimental and theoretical results in the limit of large Fr0. Rearranging (2.12), we
obtain zm/r0 = 0.87Fr0/

√
αf . We can directly compare this expression with (1.3) using

the result (1.2) from Turner (1966) to obtain zss/r0 = 2.46Fr0 = 0.852Fr0/1.43
√

αf or
αf = 0.058. This is very close to the value αjet = 0.0535 (see Fischer et al. 1979). For
smaller Froude numbers, we might expect the entrainment coefficient to be a function
of the Froude number in a manner similar to that for plumes, as shown by Kaminski
et al. (2005). A detailed analysis of this problem is beyond the scope of this paper.

Now that we have an estimate of αf , we can compare values of Γ ′
0 to Fr0. Γ ′

0

written in terms of the source velocity, buoyancy and radius is

Γ ′
0 =

5r0g
′
0

27/2αf u2
0

=
5

27/2αf

Fr−2
0 . (3.2)

Substituting αf = 0.058 and our earlier estimate of the highly forced to weak transi-
tion value of Γ ′

0 = 1, we estimate that the transition to the weak regime occurs at
Fr0 = 2.8. This is in very good agreement with our experimental results that indicated
a transition for Fr0 ≈ 3.

4. Conclusions
We have recast the plume conservation equations of Morton et al. (1956) in terms

of the dimensionless parameter Γ (z) ∼ Fr(z)−2 and dimensionless flow width β(z),
and solved for the initial rise height of a fountain over a range of source Froude
numbers. We demonstrate that for intermediate Froude numbers (1 � Fr0 � 3) the
rise height of the fountain no longer scales linearly on Fr0 but rather on Fr2

0. The rise
height also becomes independent of the entrainment coefficient α. This result may
have a significant impact on the parameterization of the entrainment across density
interfaces driven by turbulence in plume-, jet- or fountain-like flows. For Fr0 � 1,
the flow is hydraulically controlled by the radial outflow and the rise height scales
on zss/r0 ∼ Fr2/3

0 . In this regime, viscosity will tend to retard the outflow, which then
requires an increased head to drive it. Therefore, the fountain rise height will increase
with decreasing Reynolds number.

A series of laboratory experiments was conducted to identify the existence of the
weak-fountain flow regime and to verify the zss/r0 ∼ Fr2

0 power-law scaling we derived.
Our experimental results are plotted, together with previously published data. Our
experimental results are consistent with these sets of data, and clearly show the
intermediate flow regime where zss/r0 ∼ Fr2

0. The hydraulic control model for very
weak fountains provides a lower bound on their rise height. We also use the rise height



328 N. B. Kaye and G. R. Hunt

limit for large-Froude-number fountains of Baines et al. (1990) to establish that the
appropriate entrainment coefficient of a highly forced fountain is approximately equal
to that of a pure jet.

N. B.K. and G. R.H. would like to thank the EPSRC and BP Advanced Energy
Programme at Imperial College London for their support of this research, and
Dr Greg Lane-Serff for his help with the very weak fountain regime.
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